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ON THE SHAPE OF MINIMUM-RESISTANCE SOLIDS OF REVOLUTION MOVING 
IN PLASTICALLY COMPRESSIBLE AND ELASTIC-PLASTIC MEDIA* 

A.I. BLINIMOVICH and G.E. YAKUNINA 

A variational problem on the shape of minimum-drag thin solids of 
revolution moving at a constant velocity in plastically compressible 
and elastic-plastic media simulating soil and metals, respectively, is 
formulated and solved under the assumption of the validity of the plane 
section hypothesis. Optimal solid of revolution shapes are found when 
there is friction in the medium. Optimal body shapes and their 
resistance are computed on a computer for real soils under different 
isoperimetric conditions. It is shown that a cone is not the optimal 
solid in a number of cases. One special case of the problem being 
investigated was examined in /l/ in an analogous formulation. 

1. Formulation of the problem. A body moving in a medium overcomestheresistance 
this medium. To ensure maximum depth of penetration it is necessary, other conditions being 
equal, to select that body shape that will ensure body motion for minimum possible resistance 
of the medium. We will consider plastically compressible media which, with an appropriate 
selection of the governing parameters, will simulate real media, soils in particular. We will 
assume that the body is thin and moves at constant velocity. 

Because the velocity of thin body penetration substantially exceeds the velocity of 
particle motion of the medium under consideration and the interaction of the body with the 
medium is inelastic, it can be assumed that the moving body seems to "displace" aside the 
particles of the medium, i.e, the "plane sections" hypothesis is valid /2/. 

W will confine ourselves to considering solids of revolution. Let the body axis be 
denoted by the x axis in a cylindrical system of coordinates. We give the generator of the 
solid of revolution in the form 

Y =y I (x) (1.1) 

where f(x) is a twice-differentiable function satisfying the convex body conditions 

1' (x) = df/dx > 0, f” (x) = #f1dx2 < 0 (1.2) 

Under the assumptions made, the resistance force D acting on a thin solid of revolution 
of length zB = L penetrating into the plastically compressible medium at a constant velocity 
u directed along the body axis determined by the functional /3/ 

% 

D=4 P,(f’+tlo)fdx 

p,, = ii;‘, -1 Bff” + G 

(1.3) 

(1.4) 

Here p,,is the pressure of the medium on the surface ofthepenetrating body, cl0 is the 
coefficient of dry friction, and A 20, B > 0, G>O are coefficients governing the properties 
of the medium. 

A shock wave moves ahead of the body as the body moves in the medium. Consequently, the 
coefficients A,B,G should depend on the initial density p0 of the medium, the density p 
ofthemedium behind the shock preceding the body, the magnitude m of the adhesion, the angle 
0 of internal friction, and the counterpressure pa of the medium. 

Introducing the notation 

b, = p,,lp, = con&, a = (1 - b,)-’ 
T0 = 2m cos 8, ‘p = sin 8, y = cp/(l + (p) 
pod = 2x, p$ = 2x1 

(1.5) 

we will write the expression for the coefficients A,B,G of the medium in the form utilized 
most often in practical computations /3/ 
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A= 
-[a+~-l+Zb,(l-y)uv++ 
i--Y (UV- I), YPO 

xl(lna+bI), Y= 0 
B = 2X1P (aV - l), Y # 0 Q-%+wJ-l(av- l), Y#O 

xllna, y=o’ G= -cO In a, y=o 
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Let us determine the class of allowable functions f(x). Since thin bodies are considered, 
the condition f'"<l should be satisfied, i.e., 

f' <k,, ko2 = D (1) = const (1.7) 

For the model used for the medium, by considering separation-free flow around the bodies 
we obtain a constraint on the class of allowable functions from (1.4) 

P,, = Af’2 + Bff” + G 2 0 (~4 

If 1’ (x)#O, then the side surface S ofthepenetrating body and its volume V can be 
written in the form 

where y,=d/2 = R, is the radius of the body base (Fig.1). 
We assume that 

f 0% = 0 (1.10) 

the optimal body contour is sought in the 
satisfying conditions (1.2), 

It is convenient to express conditions 
(1.2): (1.8) and (1.10) in the form 

Fig.1 f’ - 12 = 0, g’ + UP = 0 

A$ + Bfg’ + G - fi2 = 0, f’ - k, + a2 = 0 

(1.11) 

where I, W, a, fi are real variables and the function g(x)is determined by the differential 
condition 

f’-g=O (1.12) 

Therefore, the problem of determining the shape of a thin minimum-resistance body 
penetrating a plastically compressible medium at a constant velocity reduces to a variational 
problem to determine the functians f (x), g (x), a (r), w (r), I (r), p ( x minimizing the functional ) 
(1.3) and satisfying the isoperimetric conditions (1.9), the differential conditions (1.11) 
and (1.121, and given conditions at the ends. 

2. General solution ofthevariational problem. The problem formulated in Sect.1 
is equivalent to seeking the extremum of the functional 

“k 

I= s F(f, f’, g, g’, w, a, 1, B, h,, A,, A,, h,, h,, x6, h,) dx 

0 
V-1) 

under the conditions (1.111, (1.12), (1.9) and conditions at the ends. Here 

F = (A$ + Bfg’ + GNg + po)f + A, Wf’ - g) f (2.2) 
h4 (x)(g’ + w”) + h, (.W’ - k. -!- a’) + h (4(-4g* -I- 
Bfg’ + G - fl”) ,+ h, (d(f’ - 1’) + hf + a2f 

0.1, L h, (4, . * ., J”, (4 are Lagrange multipliers). 

The trsnsversality conditions for the problem under consideration are written in the form 

[F - ~'FI, - g’F.4~ 8xk + [F/*h hk + [Fg’h hk - [F&f], ho = 0 (2.3) 
F,. = aF/af’, . F,. = 8Ffc?g’ 

where the subscripts o and k correspond'to values of the functions and variations at the 
initial and terminal points of the curve, respectively. Condition (2.3) should be satisfied 
for any allowable variations 6xX, 6yk, 6gk. Consequently, if additional constraints are not 
imposed on them, it follows that 
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By the condition of the problem no constraints are imposed on the variation 6g at the 
initial and terminal points; therefore, the last two relationships in (2.4) should always be 
satisfied. They have the form 

nfk' (fr' -t PO) -+ lLIK -)m h,, + Bfb == 0, h"" -= 0 ("3) 

Necessary conditions for a minimum. By applying the rule for solving problems with 
constraints of the equality and inequality type /4/, we obtain that the conditions 

142 (2) ;-=_ 0, h, (z) > 0, h, (z) i= 0, A? (x) < 0 (Z.6) 

which can also be obtained directly from the necessary condition for a minimum, the Legendre 
condition, should be satisfied along the extremal. 

The Euler equation for the problem under consideration has the form 

dp#vdx - F, = 0, dFJdz - Ff = 0 (2.7) 
FIX = 0, Fp = 0, F1 = 0, F, = 0 

The last four relationships yield 

h,a = 0, &$ = 0, X420 = 0, h,l = 0 (2.8) 

We note that if &TO along an arc of the extremum, then h, %a 0 and, conversely if 

&l+ 0, then h,r 0. 
It follows from (2.5) and (2.6) that 

h,, = 0, if fk = Or PO > o (2.9) 

(since the extremal is the line /E 0 in this case) 

A,, #= 09 if fk # 0, PO > 0 (2.10) 

(since otherwise k*& = - BfkZ, (fk' + PiJ =z 0). 
When conditions (2.10) is satisfied we obtain from (2.8) 

fib_ = 0 (2.11) 

On the basis of (1.11) in particular , condition (2.11) means that the extremal does not 
contain the segment f’ = 0. But we then obtain from (1.11) and (2.8) 

A, (Cr) sa 0 (2.12) 

Taking account of (2.121, we rewrite the first two Euler Eqs. (2.7): 

h 3 f A,' + &,'Bf - h,g (2A - B) = (3A - 2B)@f + (2.13) 

2~0 (A - B)gf + Gf 

d (A, -I- h,)i'dr = (Ag2 + 2Bfg' -F G)(g + pO) -t- &Bg' -t- 

hx -I- 2&f 

The function F does not contain the variable r explicitly, consequently, a first integral 
exists for the Euler Eq.(2.71 

P - f’Fi, - g’F,r = cl = const (2.f4) 

or in expanded form 

(Ag2 + G)(g -i_ y,)f= --h, (A@ + G) + .h,g -t- bk, -+ % - &f - %f (2.15) 

OII the basis of (2.15) and the first of relationships (2.131, taking (1.12) into account, 
we obtain the following fundamental equation of the problem 

[2 (A - B)f'3 + p0 (A - 2B)f'" - yoGlf = - c1 -I- 
h,f -I- h,fL + h,'f' + h,k, + h,G + h,'f'Bf - h,f'" (A - B) 

(2.16) 

where in conformity with the properties of the media being considered always A - B>O, A - 

2B< 0. 

The Weierstrass-Erdmann conditions. At conjugate points of the extremal arcs the 
following conditions should be satisfied: 

A(F-f'f'F/, -g'Fg~)6rC +A(F& Sf,'+ A(Frs) Sf,=o (2.17) 

where A is the difference between the values in frontofand behind the conjugate point with 
coordinates (&, .!I,), and f,' is the derivative at this point. If additional conditions are not 
imposed on the behaviour of the extremal at the conjugate point, then conditions (2.17) are 
rewritten thus in expanded form: 



A Ia, (Af- + G) - hj’ - h&,1 = 0 (2.18) 

A [h, + B/h,1 = 0, A IA, + A,1 = 0 

Taking account of (2.6) it follows from . the second relationship in (2.18) that the 
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functions & (x) and A, (r) are continuous, and since h, (x) = Bf,h, (f), we have 

A, (a) = A, (xc) = 0 (2.19) 

On the basis of (1.11) and (2.8) it can also be concluded that 

A4 (z) = 0, A5 (.Z) = 0, if h, (z) # 0 (2.20) 

a, (4 = 0, if & (.r) + 0 or h, (z) # 0 

Consequently, we obtain from (2.10) and (2.11) that the extremal should be terminated 
by the arc 

Af’* + Bff” + G = 0 2.21) 

It cannot start with the arc (2.21) since f'(O)= m for the curve (2.21), which con- 
tradicts condition (1.7). Consequently h, (0) = 0. 

Thus, we have shown that if the function f(m) minimizes the functional (1.3) under 
conditions (1.2), (1.7)-(1.9) and given conditions at the ends of the interval, quantities, 
dependent on X,W, a, 8,&, a,, a.,, h,,satisfying Eqs.(l.ll), (1.12), (2.8) and (2.13) and con- 
ditions (2.3), (2.6), (2.17) should exist. 

We note that if the quantity xk is arbitrary: we then obtain from (2.4) and (2.14) 
c,=o; (2.22) 

If the quantities S and V are arbitrary, the following respective relationships will be 
satisfied: 

a, = 0, a, = 0 (2.23) 

3. Minimum resistance body shape when one of the governing geometric 
paraemters is specified. We consider the solution of the above variational problem for 
different cases of giving one of the geometric parameters governing the body shape (the 
volume V, the surface area S, the length L, and the maximum diameter d). 

As follows from (2.5), (2.10), (2.20) and (2.19), theconditions 

should be satisfied 
For cases when 

a8 (XL) = - fk (fk' + h) 
a4 (0) = a, (0) = 0, a4 (xc) = a, (xc) = 0 

(3.1) 

in all cases listed. 
the body diameter d is arbitrary, we obtain from (2.3) and (2.4) 

lFfk’l = [a8 $ a& + a71k = o (3.2) 

A solution oftheproblem with f(.z)qk 0 does not exist 
body parameter is given. 

Indeed, we assume condition:(2.10) satisfied; we then 
is terminated by a segment of the arc (2.21). But it then 

a, (Sk) = 0, a, (zk) = 0 

Substituting (3.3) and the first condition from (3.1) 
assignment of the parameter L, V or S, we obtain that 

ct = a, = h, = 0 

We obtain from (2.15) for the arc (2.21) 

h,g = --Bfg' l(g + P0) f + u 

in those cases when one geometric 

obtain (2.12). The extremal f(z) 
follows from (3.2) and (2.20) that 

(3.3) 

into (2.15), independently of the 

(3.4) 

(3.5) 

Since h, (z) rO on the arc (2.21), then fromthesecond equation of (2.13) and (3.5) we 
obtain for the function n,(z) on the arc (2.21) 

a,f = A, = const (3.6) 

Under the conditions (3.4) , Eq.(3.6) is always satisfied on the arc (2.21). Taking (3.31 
into account we obtain from (3.6) 

a, (4 G 0 (3.7) 

Since po>o,f')/o, then it follows from (3.5) and (3.7) that the third condition in (3.1) 
can only be satisfied if fe= 0. And, in turn, this is only possible when the extremal is the 

The result obtained contradicts condition (2.10). 
Therefore,theextremal should satisfy condition (2.9) when one of the parameters L,S 

or V is given. In these cases the arc (3.8) will‘be a solution of the problem if the boundary 
conditions on L,Sor V are satisfied here. Otherwise, no solution of the problem exists. 

When just the body length L is given, an arc (3.8) of length L will be the solution. 
The single boundary condition is satisfied here. When S#O or V#O is given, the arc (3.8) 



390 

cannot be a solution of the problem since the conditions on S and V are not satisfied. 
Therefore, no solution of the problem exists in these cases. 

We now examine the case of giving just the maximum body diameter d= ZR,. Since L, Sand 
V are arbitrary here from (2.22)-(2.23), conditions (3.4) will be satisfied. Since d=+O, 
condition (2.10) is satisfied; therefore, a segment of the arc (2.21) will be the lastsection 
oftheextremal. On this arc the function &(z) satisfies Eq.(3.6). Taking account of (3.1) 
we obtain from (3.5) 

l&fllk = 0 (3.9) 

As was noted above, if h,<(.Zk)= 0, then condition (2.10) will. be violated, and we therefore 
obtain from (3.9) 

fk’ = 0 (3.10) 

Let us find the shape of the extremal for a given diameter d. The extremal satisfies 
(2.16), which taking (3.4) into account we can write in the form 

[Z(A - B)1'3 + /Lo (A - 2S)f'" - p&If = 
L4'f' - h,k, + h,G + h,‘ff’B - h,f’= (A - B) 

(3.11) 

It hence follows that the extremal cannot contain the arc along which w#O and 6#0. 
Otherwise we will have from (2.8) Aa= A,= he= 0. But under this condition we obtain that 

a cone with w= 0 will be the solution (3.7), which contradicts the assumption made. There- 
fore, the desired extremal can consist of just two arcs f"= 0 and Ha+ Bff”+ G= 0, where, 
as noted at the end of Sect.2, it can only start with the former of these arcs and terminate 
withthelatter. 

Now let k0 be a known constant. We will show that depending on the satisfaction of the 
conditions 

@ (&,) = 2 (d - B)k,3 + p’o (A - 2B)k,Z - poG > 0 (3.12) 

Q (k,) < 0 (3.13) 

two classes of solutions are obtained. 
If condition (3.12) is satisfied, then A,(r)=0 along the gxtremal. 
Indeed, if h,fO, the extremal starts with a generator of the cone f=- k,z, where the left 

side of Eq.(3.11) is greater than zero. But then if the limits as f-fC+ are considered in 
(3.11), then taking (3.1) and (2.8) into account we obtain that hr' (ze) > 0. And since h6 (2~) = 0, 
the condition obtained will contradict (2.6). Therefore, in this case the extremal cannot 
start with the cone generator f- k,s and consequently a, (2) Es 0. 

Then as follows from (3.11)) tie have on the arc f(x) = kx 

&‘ (x) = [2(A - B)k3 + p,, (A - 2B)k2 - pL,GIx (3.14) 

i.e., il’ (m)is a linear function where h,'(O) = 0. If )L4'(m)f 0, we obtain thatitis impossible 
to satisfy the conditions h, (0) = O,& (x0)= 0, where me # 0. 

Therefore, it is shown that under the conditions (3.12) the extremal starts with the cone 
generator f = kx, where k is determined fromthecondition h& (x)= 0 or Q(k) = 0, or 

2 (A - B) P + pLo (A - 2B) k2 - pOG = 0 (3.15) 

Now, let condition (3.13) be satisfied. Then since the condition k Q k, is satisfied 
for allowable k, condition (3.13) will be satisfied for all possible k according to the 
general form ofthe function D(k). If it is assumed that h,= 0 along the extremal, then the 
left side of (3.11) is less than zero for all f> 0. This means that we have A;(z)< 0 on 
the arc f=kx for x >0, which contradicts the conditions h,(O)=0 and &(I)> 0. There- 
fore, the assumption that A,= 0 is not true. Consequently, in the case when condition 
(3.13) is satisfied, the extremal should start with the arc 

f = kOx (3.16) 

When either of conditions (3.12) and (3.13) is satisfied , the extremalshouldbetenninated 
by a segment of the arc (2.21). 

Let us find the ordinate of the conjugate point of this arc and the cone generator f=kx. 
To do this we solve the differential Eq.(2.21) by using condition (3.10). Then 

f’= i(F)” - _E]‘“, C”d?(+)Lla(ct= $) 

At the conjugate point f,‘=k, consequently, we obtain from (3.17) 

f, = CO( k2 + $)-lia = R, (+j- k* + I)-lia (3.18) 

(3.17) 

We obtain an explicit form of the arc (2.21) from (3.17) inthefonn 
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(3.19) 

where the constant c, is determined from the coordinates, known from (3.19) for the conjugate 

point b, = fJk, f,). Hence, (3.15) or (3.16) and (3.19) define the extremal completely when 
the maximum body diameter d is given. The general form of the extremal is presented in Fig.1. 

;m ;m; n:\;_ 

a , 2 
P 

1.5 P 3 n 1.5 PO 3 

Fig.2 Fig.3 Fig.4 

4. Examples of the computation, The extremal body shape was computed on a BESM-6. 
A model medium was taken for which 8= ZOO, m= 0.5 kg/cm2, p. = 153 kg/m3, pa== 3kg/cm2, b,= 0.6 
for a U= 600 m/set body velocity. The critical value is k0=0.3, d= 2. 

Fig.2 shows results of computing f'(O) as the coefficient of friction p0 changes. The 
critical value po* for which f'(O)=& equals 2.4. For )L~>)LO* the apex angle of the conical 
leading part of the extremal body does not change. As computations showed (Fig.3), the length 
of a minimum-resistance body LI=LIRQ (the solid line) and the conjugate ordinate f,,= fe/Ra 
(the dashed line) diminish as the coefficient of friction ~~increases. 

Comparison of the magnitude of the resistance of the extremal body obtained with the 
resistance of a cone that is optimal among all cones for a given dimensionless body diameter 
d= 2 of interest. 

The shape of this optimal cone can be found from (1.3) by substituting f = kz and then 
determining the minimum resistance as k varies. For the quantity k for an optimal cone we 
obtain the expression 

The resistance of 

The ratio between 

k-’ = (q + r)“. + (q - ,)‘/a 

P = N(W), P = A/(3@, r = (42 f p3p 

(4.1) 

the cone is defined by the expression 

D1 = nR$ (Ak2 + p,,Ak + G + p,,G/k) (4.2) 

the resistance D of the extremal body and the resistance D1 of the 
optimal cone is presented in Fig.4 (the solid line) as a function of the quantity PO; the 
ratio between the magnitude of the resistance of the extremal body and the resistance of a 
cone when the bodies being compared have identical length and base diameter is shown by dashes. 
It is seen that the optimal bodies possess considerably less resistance than the conical 
bodies. 

We note that the programs compiled for the BESM-6 when carrying out the research enable 
one to solve the optimal optimization problem for any given value of the body parameters and 
the plastically compressible medium. 

5. On minimum resistance bodies moving at constant velocity in an elastic- 
plastic medium. The methods of analysis developed in Sects.l-4, obviously carry over 
entirelytothe case of the motion of thin bodies of revolution at constant velocity in other 
mediawhenthe hypothesis of plane sections can be considered valid /l/. 

In particular, the analysis performed and the computation programs developed for the BESM- 
6holdfor elastic-plastic media simulating metals, for which the resistance D is alsodetermined 
by the functional (1.3) with the coefficients /l/. 

A=X[ln(lfs)-*I, B=Xln(l+e) (5.1) 
G = T 11 + In (1 + &)I; e = ElI2z (1 + $1 

where z is the yield point of the medium during shear, E is Young's modulus, and v is 
Poisson's ratio. 
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ON THE CORRESPONDENCE PRINCIPLE IN THE PLANE CREEP PROBLEM 
OF AGEING HOMOGENEOUS MEDIA WITH DEVELOPING SLITS AND CAVITIES* 

S.A. NAZAROV, L.P. TRAPEZNIKOV and B.A. SHOIKHET 

The plane creep problem of ageing homogeneous media is considered. The 
bulk and shear relaxation kernels are assumed to be distinct. Bulk 
forces, temperature deformations and stresses prescribed onthewholebody 
boundary are the actions. Representations are obtained for the stress, 
strain, and displacement in terms of the solution for elasticity theory 
problems for a domain with a fixed boundary and with slits and cavities 
growing according to a given law. 

For a domain with a moving crack it is proved under certain con- 
straints /l/ that the stresses in the creep problem agree with the stresses 
in the elasticity problem. For a domain with a fixed boundary, necessary 
and sufficient conditions are obtained /2/ for agreement between the 
stresses of the creep and elasticity problems. For a constant Poisson's 
ratio the problem being studied /3/ is investigated in a more general 
formulation. 

A survey of the research devoted to the correspondence principle in 
the creep theory of ageing media is presented in /4/. 

1. Let a homogeneous isotropic linearly-deformable body possessing the properties of 
ageing and creep occupy a two-dimensional domain & (r) = 9, \ (G(z) U r(t)) (5 is the closure 
of the domain 0). Here T E JO, tl is the time, Q, is a fixed bounded simply-connected domain, 

and mi (r), Yj (t) are quasistatic growing (i.e. Q (zr)C 8 (z2) for Tr> r2) cavities and slits 
with given laws of growth 

It is assumed that oi(z) are simply-connected domains with piecewise-smooth boundaries 

a"i (7) /5/f while vi(z) are simple unclosed curves made up of the smooth arcs Tj, fl Tsj = A, 
ipj, i, j=1, . . . . N, yi n yj = A, i # j, i, j = N f 1, . . ., N i- J and given parametrization 

xj (57 T)t for 5~ LO, I], of the curves aoi CT)7 Yj CT) and piecewise-continuous in %. 
The boundary aa of the domain B(z) consists of the boundary a&,, the cavity bound- 

aries ami and the edges J'j'(r) of the slits yj (r). The bulk forces f = {fi (x, ?)) and 
the temperature T (x,~) are given for xEQ(z), i = 1, 2; the surface loads F = {Fi (x, T)} are 

defined for xfZ an(z), and equilibrium conditions are satisfied for all Z. 
The equationsofthe plane creep problem have the form 

~i,(X,T)~=2-‘(Ui,j(X,~)+Uj,i(X,T)), i,j=1,2, XEQ(T) 

*Prikl.Matem.Mekhan.,51,3,504-512,1987 
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